Climate Analysis for Enhanced Resilience

Ben Zaitchik Johns Hopkins University

Projected Precipitation Changes

GCM-based Precipitation Maps

- Spatially coarse
- Highly uncertain
- Underestimate extremes
- Systematically wrong in some regions

So: Are the GCMs Useless?

No: there is useful information in the projections

 But: precipitation projections applied directly to food/water security planning can be worse than useless

1. Dynamical Downscaling

- Physically-based predictions
- Can handle nonstationarity
- Requires extensive evaluation of RCM and GCM
- Computer and time intensive

2. Statistical Downscaling

- Data-based and not computer intensive
- Does not rely directly on GCM atmospheric dynamics
- Requires 30+ year meteorological station records
- Assumes stationarity

3. Physiographic Interpolation

- Physically based
- Highly localized at low computational expense
- Can utilize satellite data
- Derived from a larger scale projection
- Requires extensive station data for calibration and evaluation

Summary

- The utility of GCM projections depends on <u>region</u> and <u>impact</u> of interest
- Dynamical downscaling is valuable in regions where GCMs have credible large-scale dynamics, but is resource intensive (computers, people)
- Much can be achieved with statistical + topographic methods, but data and understanding are required
- Coordinated dynamical-statistical approaches are optimal, resources allowing